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Abstract
The states of the three-dimensional quantum harmonic oscillator classify optical

aberrations of axis-symmetric systems due to the isomorphism between the two mat-
hematical structures. Cartesian quanta and angular momentum classifications have
their corresponding aberration classifications. The operation of concatenation of op-
tical elements introduces a new operation between harmonic oscillator states.

1 Introduction: Optical Phase Space

Geometric optics uses the following ‘screen’ coordinates for light rays [1]:

q = (¢z,qy): Coordinates of position on the 2-dimensional screen. The intersection of the ray
with the screen ranges over R2.

P = (pz,py): Coordinates of momentum (with respect to the same screen). The projecton of
the ray 3-vector along the ray [of length n, the refractive index of the medium at
the point] on the plane of the screen is the momentm 2-vector; the component
normal to the screen is the evolution Hamiltonian (below). See Figure 1.

Geometric optics has Hamiltonian evolution equations between the canonically conju-
gate variables p and q. The optical Hamiltonian is

h=—ps = —\/n(q,2)? - p[?. (1)
Plain geometry [2] provides the first Hamilton equation
dq ok p
— | e T e T 2
AP (nolg 2)

while Snell’s law yields the dynamics of the second Hamilton equation
dp _ oh n don

1z —-a—q=—;:%={?z,°} p. (3)
We use the Poisson bracket [3]
af 3g adf ag)
g} = °orf ey 21993, 4
{0} ,-___z,:,y (3‘1:' dp; 9p; 9 “
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FIG. 1. The coordinates (p,q) of optical phase space in geometric optics. The
2-axis is traditionally the optical axis.

for functions f, g of p and q, and the corresponding Lie-Poisson operators {f,o} as generators
of Lie algebras [4]. This space is subject to Hamiltonian evolution equations and constitutes
optical phase space, subject to the same local symplectic structure as the well known mechanical
phase space. Optical phase space differs from the mechanical one globally, however, in that its
momentum ranges over a compact domain: (two) disks (forward and backward rays) of radius
n(q), the refractive index.

2 Examples

Free flight in homogeneous medium (n constant) yields the solutions
P
q(z) =expz{ps,o}a=q+2 =,  p(2) =expz{ps,o} p=p. (5)
VnZ — |pf?

This is shown in Figure 2.

One example we may use to distinguish mechanical from optical phase space trans-
formations pertains the mechanical oscillator versus —or vis-d-vis [5]— light in a fiber whose

refractive index is a function of the radius |q| to the optical axis: n(q) = \/n — v|q|2. We call
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FIG. 2. The deformation of phase space due to free flight between two screens.
Since the optical transformation is canonical, the area elements are preserved, and
80 is the allowed strip of phase space, |p| < n. [Figure by G. KROTZSCH, IMAS—
UNAM,|

this the elliptic index-profile fiber. The evolution Hamiltonianis A = —\/ n — (Ip|? + v|q|?).

For every z phase space is the patch (|p|? +v|q|?) < n2. Figure 3 shows the resulting evolution
of phase space, compared with that of the mechanical harmonic oscillator.

In a homogeneous optical medium, phase space is a strip |p| < n. The Fourier
transform is a fundamental ingredient for much of coherent-state (paraxial) optics; yet, the
Fourier transformation (p — —q, q — p) is not an invariance transformation of this space.
Nevertheless, one may define a truly optical Fourier transform, that in one dimension has the
form

r___ (1-p?2 r_ [1+(1-p%)3¢%%?
P =- q, qg =
V1+(1-p?)3q? V1-p?
that respects the strip of phase space, paraxially rotates by %w (as the usual Fourier transform),

and is nonlinear symplectic. In Figure 4 we show the optical Fourier transform for a quadrant
in the phase space strip.

p, (6)

3 Linear Transformations of Phase Space

Although mechanics and optics phase spaces differ in their global properties, their paraxial
correspondence motivates that we Taylor-expand all expressions into series where we may trun-
cate the series to some aberration order in the powers of the phase space variables. We will
thus work with polynomials and so we may ignore the range restriction. In fact, we thus substi-
tute the structure of Euclidean-based 47 optics by the metazial Heisenberg—Weyl Lie-algebraic
structure suitable for aberration expansions in powers of the phase space coordinates.
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FIG. 3. Left: evolution of mechanical phase space under harmonic oscillator
time evolution, for one space and one momentum dimension. Phase space rotates
rigidly. Right: evolution of optical phase space under 2-translation. The phase
space disk rotates differentially and resembles the harmonic oscillator only for small
p and g, t.¢., in the parazial optical regime. The circular (in general, elliptic) region
is optical phase space: coordinates are meaningless beyond the edge. [Figure by G.
KROTZSCH, IIMAS-UNAM.]

In effect, we may classify the symplectomorphisms of phase space by the Lie-Poisson
generators of the finite transformations.

Translations of phase space are generated by linear functions of (p, q) through expo-
nentiated Lie-Poisson operators:

epia-tp,o)) (P)=(P,), ew-taon (B)=(PLP), o

q-a q

as shown in Figure 5.

Linear canonical transformations of phase space are generated by the quadratic func-
tions p;p;, pi¢;, 49, * = Z,y. These functions close into an sp(4, R) algebra under Poisson
brackets. Further, optical systems that have a common axis of rotatxonal (and inversion) sym-
metry are generated by linear combinations of p? = [pl2 p-q, and ¢? Iql2 that close into an
sp(2,R) = s0(2,1) = sl(2,R) Lie algebra. The corresponding group transformatxons of phase
space are well known and shown in Figure 8. The quadratic polynomial p? + ¢® generates rigid
rotations, as is well known.
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FIG. 4. Left: a quadrant in the phase space strip p < 1. The usual (mecha-

L3 13 . 1 . . L3 .

nical) Fourier transform rotates this patch by 5x in the counterclockwise direction.
Right: the optical Fourier transform maps points in the strip on points in the same;
paraxially it rotates the plane by %w, and is globally symplectic: it conserves area
elements. [Figure by G. KROTZSCH, IMAS-UNAM.]

4 General Nonlinear Transformations

Nonlinear symplectic transformations of phase space are generated by polynomials in the com-
ponents of (p, q) of degree higher than second. Again, the transformations of axis-symmetric
optical systems leads us to concentrate on polynomials of three variables

£+ = pz/\/iv EO =p-'q, E-— = qz/\/i' (80')
These variables may be placed into a vector é’ of cartesian components
&G=30*-¢%), &G=30*+d"), &=p-a (80)

They close into an sp(2,R) algebra, as we noted before. The Casimir of this algebra is minus
the squared radius of a sphere,

(pxq)? =p* — (p-q)? = —€F - €7 - €3 = —|€%, (9)

and is the well-known Petzval invariant of geometric optics.

In representing the action of optical elements by means of Lie-Poisson transformations
generated by polynomials, we are aided by the following theorem:
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FIG. 5. Translations of phase space are generated by linear functions of the
phase space observables. Left: exp{p,o} translates in g. Right: exp{p, o} translates
in p. The latter does not leave the optical phase space invariant, but serves as a
first-order approximation to translation and rotation of the screen. [Figure by G.
KROTZSCH, IIMAS—-UNAM.|

\q Aq Aq

FIG. 6. Linear transformations of phase space are generated by quadratic poly-
nomials in the phase space variables. In one position and one momentum coordinate,
the transformations shown above correspond to exp{p?,o}, exp{pg,o}, exp{¢?,c},
and respectively. [Figure by G. KROTZSCH, IIMAS-UNAM.]

Theorem (Dragt & Finn) [6]: Canonical transformations M leaving the origin invariant,
(i.e., ezcluding translations) can be approximated by a truncated product series of Lie trans-
formations

M = exp{fs,o} exp{f4,°} exp{fs,o} exp{f2,0}, (10)

where fi(p,q) are homogeneous polynomials of degree k in the components of p and q.
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Correspondingly, for axis-symmetric systems, the approximation is written as
A=... exP{ah °} exp{GSs o} exp{ag, o} exp{al,o}, (11)

with a;(£) polynomials of degree k in the components of ¢ as defined in Eqgs. (8); k is called
the rank of the phase space generating monomials.

The rightmost factor in (10) and (11) is the subgroup of linear transformations, and
factors to the left of it are nonlinear, called generically aberrations in optics. Since the degrees
of polynomials in Poisson brackets satisfy { finfe} = fj+k—2, the ranks of the sp(2, R)-based
polynomials satisfy

{ajaak} =054k-1- (12)
it follows that for each rank k, the polynomial set ay is a (reducible) sdeal under linear (paraxial)
transformations. This is the aberration ideal of order A = 2k — 1. Axis-symmetric optical
systems are described by a paraxial approximation modified by aberrations of orders 3, 5, 7,
..., generated by as, ag, ay, ..., respectively.

There are legitimate questions about the convergence of the product series and global
properties of the group of nonlinear symplectic transformations. In any case, by taking functions
of phase space modulo polynomials of degree higher than the aberration order, we may construct
a well-defined finite-parameter group of transformations of phase space truncated to that order.
Its best parametrization and, especially, the product law must be discovered —once and for
all. Thus we construct the A-th order aberration groups. The theory developed in optical
aberrations serves as well in higher approximation theory.

5 The Monomial Classification of Aberrations

It should be quite evident by now that we may classify aberrations of axis-symmetric systems
through proposing complete bases of polynomial functions ag(€) of degree 2k in phase space.
(This may also be used to classify non-axis-symmetric aberrations as broken symmetry (7]. We
have a sp(2, R) Lie algebraic graded covering structure with Poisson (Berezin) brackets between
polynomial functions of three variables.

The monomial basis is
Mi, ok = const X &7 €065, ki=0,1,.... (13)

These monomials have rank k = k4 + kg + k—, and are classified as the harmonic oscillator
Cartesian basis states. We may examine the action generated by exponentials of these mono-
mials up to the first Taylor term,

P _(P+koMi, k-1 P+2k-Mp pog _1q+-- )
exP{ M ko b} (q) - (q ~ 2k My, _ 1 kop_P — koMiy ko1ga+-o-) " (1)

In this Dragt (8] recognized the traditional third-order Seidel aberrations, generated by and
called

(r?)?2 SPHERICAL ABERRATION,
p?p-q CIRCULAR COMA,
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FIG. 7. The third order aberration sextuplet classified in £+, £o, and - coor-
dinates, and the traditional names. S: spherical aberration, C: coma, A: astigmatism,
F': curvature of field, D: distorsion, and P: pocus.

(p-q)? ASTIGMATISM,

p2¢® CURVATURE OF FIELD,
p-qg? DISTORSION,

(¢*)2 pocus.

Actually, pocus was excluded from Dragt’s list because it does not produce any change
in the screen images; rather it only changes the directions of ray arrival; it has a p-unfocusing
action that we have playfully called pocus [9]. Yet it is an aberration of phase space on par
with the other five, and the Fourier transform of spherical aberration. In Figure 7 we show the
familiar harmonic oscillator states with two quanta and its corresponding aberrations of rank
two in the monomial basis.

6 The Symplectic Classification of Aberrations

The harmonic oscillator eigenfunction structure naturally suggests another basis, following the
number of quanta, total angular momentum, and one projection.

The symplectic harmonic basis is [1], [9], [10], [11]
£23(8) = const x [()2)5~)/2 Y m (&), (15)

where (£)? is the Petzval and y,.,m(e“ ) the solid spherical harmonic of angular momentum j

and projection m. The total degree of k r,’,,(é' ) in &; is k —the rank. The index j we may call
the symplectic spin, and m the Seidel index {12]. The third-order aberration sextuplet thus
reduces, under linear transformations, into a spin-2 quintuplet and a spin-0 singlet (that is in
effect the Petzval itself). Only the m = 0 member of the quintuplet and the singlet ‘mix’ the
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RANK: k=2 k=3 k=4
SPIN: 7=2, 0 1=3, 1 7j=4, 2, 0
m=4 ®
3 ® o
2 O] o2 Da X
1 o >4 X > b
0 o | o> b b X |
-1 N o | > b
—2 ® s D |
-3 . “—
_4 °
ORDER: THIRD FIFTH SEVENTH

FIG. 8. The aberration multiplets to seventh order classified into symplectic
harmonics by rank, spin and Seidel index m. The symbols are @: sphericaleabe-
rration, O: circular coma, >, b: elliptic comas, ¢, ><: curvatisms, |, ba:
astigmatures, «: distorsion, and *: pocus [12].

curvature of field and astigmatism monomials into aberrations that we could call curvatism (in
the quintuplet) and astigmature (the singlet, invariant under paraxial transformations). The
scheme appears in Figure 8; this is but the harmonic oscillator {&~m spectrum from the k = 2
level (s-d shell) up, seen sidewise.

The constant in front of the definition of X in Eq. (15) has been chosen to avoid square
roots, because they are time-consuming for symbolic manipulation. Thus we have defined them
starting from the normalization of the highest weight %X ,f = (pz)", and their lowering through

{%qz’ o} kr’J’" = (m+ j) kr,?,.,_l. They are

bEA(E) = (e’)"“"”’\J D= e "
I S

_ )2l +ml(G—m)l 1
= (¢hk=/ am/2(25 — 1)1 ; 2"(m+n)l(j—m-—2n) n!"

We give the symplectic harmonics only for m > 0, because
krim(fh 50: E‘) = krf;;(e—s&): £+)‘ (17)

The first two ranks (k = 0,1) correspond to the scalar and the sp(2,R) generator

functions:
=1, i =v2&, ¢ =¢. (18a)
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The k = 2 basis functions are the generators of third-order aberrations:

rd =264,
2} = Vagr &, (180)
wE=Yee-+ ), =266 -6

For k = 3 we have the generators of fifth-order aberrations:

Sxd = 2v2¢3,
k3 =2¢2 ¢,

P = Waehe- +2608]),  rt =, s
23 = §(36+6oé- + &), g = 13 '%4.
For k = 4 we have those of seventh-order aberrations:
i = aed,
ird = 2v2¢% o,
rf = g(ede- +361€d), 13 = ’x¢ ’xd, (184)
‘1 = 3v2(3¢61 bob- + 26460, ‘i = 'xg *xf,

rd = A3e3 e +12e, ke +268), 1d = %3, 8 = (")

7 Spot Diagrams of Harmonic Oscillator States

The spot diagram of a transformation M : (p,q) — (p'(p,q),q' (p,q)) is a projection of R*

phase space on the screen plane, that pictures q'(p,q), the image of a pencil of rays (range
of p) diverging from a fized object point q. If we let p mark a polar coordinate grid around
the optical axis, we obtain the spots of Figures 9.1-9.5 [12]. These are the new “faces” of the
harmonic oscillator states that we present in aberration optics.

8 Characterization of Optical Elements
Optical elements may be characterized by

g{Ah As, A, M} = exP{Ab o} exP{ASa o} exp{Ag, o} exP{Al.’ o}: (190')

with the coefficients their linear action M = (‘: 3) , det M = 1, and the coefficients A¢ ;jm

of its aberration polynomials
lor0 -5 ki g
A = Z Z Ak,j,m rrjn(f) (19b)
j=k,k=2,...

m=j,7—1,...

204



50y
%é/

FIG. 9.1. Spherical aberrations ©® generated by %1k ¢ (at left we indicate the
kjm classification of the spot diagram).

Some of the most common optical elements thus represented are the following:

Free propagation: The paraxial part is F(z) = ( _zl In (1)) The (spherical aberration)

coefficients are:

fiag=~2/(8n"), fiss=—2/(16n%), fi,,=—5z/(128n7).

Elliptic-profile fiber free propagation in medium n = /12 — u2q2 is treated in [13]. The
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FIG. 9.2. Circular comas O generated by kx :—1'

cos B2 psin &2
paraxial part is F,(,)(2) = ( 1 .o 43 uz ) . The aberration polynomials are:
—2sinEr  cos &
F = —=(p* + #*la*)/8v%,
Fs = —=(lpf* + #’|a")*/160°,
Fy = —5z(lp|* + u?al?)*/1280".

The root transformation [14] indicated by Rp,g (that is the root of refraction —see below)

in medium n associated to the surface S (q’) = ¢oq® + cagt + ¢eg® + - --. The paraxial part is
R,s= ((1) —2;1 <2 ) The aberration coefficients Rg ; m, arranged as row multi-vectors with

components numbered by descending values of j and m, are
2r = {{0,0,—¢2/(2n),0,n¢e}, {—¢2/(3n)}},
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FIG. 9.3. The curvatism-astigmature m-degenerate pairs CO—|, generated
kyk ky k-2
by *Xg , and *¥ k_3-

Sr = {{0’ 09 _Q/(sns)’ - 22/(2n2)’ _“/(2“)1 2§2§4s ﬂfﬁ}, {_§2/(10n3)’ —S.%/(snz)! —2/55.4/"}}’

r = {{0,0,—¢3/(18n%), —¢3 / (4n%), — ¢t/ (8n3) — 5/6¢5 /n3, —2¢2¢¢/n2, —¢a/(2n) +
18/3¢3'¢4/n,6¢208,8/3ng2¢d + ngs}, {~38/56¢3/n%, —c3/(Tnt), —¢¢/(Tn®) —
2/763/n%, —8/Tcage/n3, —3/T¢a/n — 16/21cdct/n}, {—s4/ (150%)}}.
The refracting surface § between medium n and medium m is given by the factorization
theorem [14], [15)
sn,m;S = Rn,S R;,:S (20)
1 2m¢ — 2n¢g

0 1 ) and the aberrations are;

The linear part is S = (
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FIG. 9.4. The m-degenerate pairs pa—X.

25 = {{0,0, ¢3/(2m) — ¢a/(2n), 2nc}/m — 2¢3, —mey + 2me] + ngy — dng} + 2n}/m}, {o/(3m) —
§2/(3n)}}v

35 = {{0,0,62/(8m®) — ¢2/(8n%),ned/m® — 3 /(2m?) — ¢}/ (2n?) 3n%¢} /m® — 3ng} /m? + ¢4/ (2m) +
963 /m — ¢4/ (2n) — 263 [n,—2mgace/n + 4mgd In — sy + dndf /m® — BnPe /m? + dngyey/m +
dngd/m — 8¢k, —meg + Bmeey — 2mef + ngp — 12ng§g +dngs + 2n‘§25/m3 —4nd¢/m? +
6n2cter/m). {52/ (10m3) — ¢2/(10n%),2/5ngd /m® — ¢3/(5m?) — ¢F /(5n ),2/5n3¢d /m —
2/5n¢3 /m? + 2/5¢4/m — 2/5¢3 [m — 2/5¢4/n + 2/5¢3 /n}},

15 = {{0,0,¢2/(16m®) — ca/ (16n5),3/dne} /m® — 3/ (4m*) — ¢} /(4m3n) — ¢}/ (4n*),15/4n>e} /m® —
5/2nc] /mA+ ¢,/ (8m®)—5/12¢§ /m3 -4/ (8n®) —5/6¢3 n3,10n3 ¢} /m® —10n ¢ /m* + 3ncyey /m +
8/3nch /m3 —2gp60/m? — gk /m3+cage/ (mn) +4gd [ (mn) — 2204 /n? - 8/3¢3 /m ,~18/3me3¢y /n?+
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FIG. 9.5. Elliptical comas and their m-degenerate partners C>—o.

32/3m¢8 /nd + 15n4¢P /m5 — 2On3§g/m‘ + 15n2§3g4/m3 + angf/m"' - 62/3n¢d¢y/m? —
20/3n¢3 /m3 + ¢g/(2m) + 19¢3¢y/m + 11¢§ /m — ¢e/(2n) — 8¢2¢4/n — 16¢5 /n,—Bmeace/n +
116/3mg3 ¢y /n — 52/3med /n + d¢gge + 12n°¢8 /m5 — 20n4cP /mt + 28n3¢d e /m3 — 4/3n3¢8/mS —
176/3n%¢3¢e/m? + 84/3n%¢§ /m? + 2neyes/m + T2nede/m — 36n¢f/m + dng}/m — 80¢s¢q +
124/3¢3 — 4¢] 8meycd — mg + 2mefcs + 88/3mefe, — 124/3m¢] — 24n¢ed + neg — 4ngdcs —
40n¢de, + 200/3n¢] +4n%] /m5 — 8n5cl /mt + 18n4¢¢, /m3 —20/3n4¢] /m3 - 152/3n3¢f¢ /m? +
112/3n3¢] /m? + 40/3n3¢3¢3 /m + 2n3¢d e /m + 164/3n3 chey /m — 188/3n2¢] /m +8/3miey¢? /n -
32/3m2¢fce/n + 32/3ms] /n},{3/5663/m" — 3/56¢3/n% 3/Tng} /m® — 3/ (Tmd) — 2/ (TmSn) —
3/(Tn),9/Tn2 ¢} /m® —8/Tng] Im* + ¢y /(Tm®) — 6§ / (Tm3) — ¢/ (1n3) - 2/7¢} /n3,12/ Tn3¢} /S -
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12/Tn3¢h/m* + 12/Tnggey/m® — 8/Tngh /m® — 8/Teagy/m? + 12/7¢f [m? + 4/Teae4/(mn) —
12/7¢4/(mn) — 8/Tgacy/nd + 8/7¢}/n?,18/21m¢f ¢y /n? — 32/21m¢3 /n® + 8/Tnt¢3 /m5 —
8/7n3¢5 /m4 + 20/Tn3¢dcy /m® — 20/Tn¢f /m® — 64/21ncd ¢y /m? + 104/21n¢d /m3 + 3/7¢g/m —
12/7¢3cs/m — 18/1¢§ /m — 3/T¢s/n + 8/Tedsa/n + 18/7¢5 /n}{¢4/ (15m®) — ¢4/ (15n°)}}.

The curved mirror transformation by S can be found from M, g = R,,,SR:,I" s [16]. The
refracting surface between two elliptic-profile fibers has been calculated in Ref. [13].

9 Multiplication Law in the Aberration Group

For aberration orders 1, 3, 5, and 7 (ranks k = 1, 2, 3, and 4), the dimensionality of the
basis is, respectively: the 3 generators of sp(2,R), the 6 third-order aberrations (separated
into a quintuplet and a singlet), the 10 fifth-order aberrations (a septuplet and a triplet),
and the 15 seventh-order aberrations (divided into a nonuplet, quintuplet and singlet). The
number of parameters of the corresponding aberration group elements in Egs. (11) and (19)
thus accumulates to:

3 spP(2,R) (ABERRATION ORDER 1)

9 LINEAR + ABERRATION ORDER 3

19 UP TO ABERRATION ORDER §

34 UP TO ABERRATION ORDER 7

If we indicate the seventh-order pure aberration group elements by the coefficients of

the polynomials in

g{A4sA3s A, 1} = exp{A4,o} exP{A.'no} exP{Az,O}, (21)

the central problem is to find the multiplication table involving the 31 up-to-seventh order
aberration coefficients in the product

6{C4,Cs,C3,1} = G{A4, As, Ag,1}G{By,B;s,B3,1}, ie. C=A#B. (22)

To find explicitly the gato operation # between the individual coeficients, we may use
Baker-Campbell-Hausdorff relations. Order 3 is abelian; order 5 is the practical limit for
hand calculations, and order 7 is definitely nontrivial and needs symbolic computation [12],
[18]. The pure aberration group composition law was calculated once and for all, to find the
composition of aberrations. It is:

Aberration order 3:
C2,j,m = Az,j,m + Bg’j'm, 7=20, m=73j5-1,...,—J
Aberration order 5:

Csss =2A231B222 — 243228221+ As3,s + Bsss,
Cs 33 = 4433208223 — 4432,2B330 + 433,23 + B3 3,2
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Css1 =6A33,-1B222+ 24232083231 — 2422,1B2,20 —84233B22,-1+ Ass,1 + Bs s, 1,

Css0=8A22 3B333+ 443318221 — 442218221 — 843328332 3+ Ass0+ Bssp,

Css,—1=06A32_3B321+2433 18320 — 2432,082,2-1 — 64221832 -3+ As3s,-1+ Bss 1,

Cs,s,—2 = 44A23,-2B220 — 442,20B33,-2 + Ass,—2 + Bs 3, -3,

Css,—s =243 2823 1 —2A432-1B3 2,3+ As s s + By s _s;

Cs1,1 =4/5A23, 18222 — 2/5A43,20B2,21 +2/5A22,1Ba,20 — 4/5A222B23, 1+ As 11 + Bs 1 1,

Cs,1,0 = 16/5A2,2, 283,23 — 2/5A3,3, 183,21 + 2/5A22,1B23,—1 — 18/54229B23 2 + As 10 +
Bs 1,0,

CSé 1 =4/5A2,_2B321 —2/5A32 1B320+2/5A320B22,-1 —4/5A4221B22 2+ As 11 +

8,1,—1-

Aberration order 7:
Cea4 = 84%213222 + 32/3A2223220 - 15/3A2203223 — 32/3A3204223B2332 —

8A32,142,22822,1+4A4221B221B232+6A4221Bs 33— 4A2223221+16/3422232203222—
4A2223332+A444+B444,

Cius = 3243 32B39 1 — 16453 —1B} 33— 32433 _14222B333+64/343204231B323 -
80/3-4220.42223221—8/3Azzananz+12A2203333+16/34221A2223220+
40/3A22132203222+242213332+16A222322 13222-32/3422232203221—
8A2223331+A443+B443,

Ci4,2 —64/3A2203232+8/3A2213220+64A222322 -2 — 32432 23222
64-422 2A2223222+16A22 1A2213222-5 Azz 142223221—20422 -1B322,1B2232 +
18439, 13333—4/342203221‘8/3A220-42213221—64/3-4220-42223220+
32/3A22032203222+8AzzoBssz+40A221A222322 1+28A4391B23 18222 +
4/3422132205221-2442213331—32/3422232204*32-4222322 —2B3 33 -
8A42,2,2B23,-1B23,1 — 12422 3Bs 30+ A4 3+ Bya2,

Cia1 = 16/342203221+164221322 -1 —96A33 3433383321 — 48432 _2B221B323 +
24433 2Bsss — 8433 13231 +160/3A3,3,1A2,20B2322 — 18423 142218321 —
173/342 2,-14222B230 8/3442 3,-1B220B32,3 + 14433 1By 32 — 16/3A433 043218220 +
16/34220-422232 3,-1+ 88/3A22032 2,-1Ba 322 + 8/3A2 203220322 1+ 4AnoBs 31—
8/3A2213330+964221A222322 ~3 +484321B33 3B323 + 84221833 1B331 —
6A42,3,1B3,3,0— 80/343,23B33 183,20 — 164233Bss 1 + Ag a1+ Baa 1,

Ceu0 = 40433 _ B2y + 40435 Byg 3 — 20433, ~3B3 51 +160/3A23 _24320B322 -
4043 2, 2A2213221—320/3422 2442223220—80/3‘422 —-2B220B2,23 + 20432 _2Bs s 2 +
40/3-422 1A2203221—8O/3A22 1-42213220-404422 1A222322 -1+
2043 2,183, 13222—20/3A22 -1B220B3 3,1+ 10432 13831+40/3A220A22IB22 1+
160/3A220A222322 2+160/34220322 23222+40/34220322 1B221 +
20A2,2,1B22,-2B2,2,1 — 20/3A33,1B2 3 _1B220 — 104221Bss -1 — 20422283, ;| -
80/342,2,2B3,3, 28220 — 204292Bs 3,3 + A44,0 + By 40,

Cad,-1=1643 5 _;Ba31+16/343 5082, 1+98423, 343, 1B23,3+16/3433, 242208221~
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176/3A3 3 —3A3,3,1B33,0—96A2,2,-3422,2B3,3,—1—80/343,3,_3B320B3,21+1643,3 2Bs 3,1 -
8/3Az,3,_1B330—16/3423,-1422,0B220—16A3,21423,1B23,1+48423,1B23 283,22 +
84321823, 13221+6A22 1Bsso+130/3A220A221322 2+88/3-422an —2B221 +
8/3A320B33,-1B220 — 44320Bs3, —1—84321B3, | — 8/343,1B23-2B2,20 —
14A39,1Bs 3, -3 — 484322823, 2322 1—244222333 —s+ Agq,-1+ Bey,-1,

Cyu, 2—64.422 2Bzgz+8/3.423 lezo+64/3A220322 —3—32/3433 23220+
40A23 3423 - 13221—64/3422 —gA330B230 — 56432 —24221B22,-1 —
64A22 2A222322-2+32422 —2B22, 23222—8422 —2B33 _1B3321 +12A32 2Bsso -
8/3422 1A220322 1+ 16422, xAzlezz 2+28A22 1322—23221+
4/3A23,1B23 -1B220 + 2A2,3,-1Bss, —1—4/34320B}, _ 1+32/3A220322 —2B320 —
8A3g2,0Bs 3,3 —20432,1B23 2813, —1—18Ag91Bss s — 32422383, 3+ A44-2+Byy -2,

Cuu,—3 = 3243, 3Baa1 + 16/3A22 2433 1B220 — 80/3432 242208221 -
32432, 24221322 3+ 18A39 2B23 9B2321 — 32/3A32, 2B 3 1B22,0 +
8422 —2Bs s, 1+54/3A22 1A220322 2+40/3-422 1322 23220—2A22 -1Bss3,—2 —
8/3-4220322 _3B3 31— 12422,0Bs,s, 3—-16A“1322 —2+ A4u,-s+ Byy-3s

Cyu, 4—32/3Azz 23220+8An 1B2,2,-3 — 4423, 2322 —1— 8432 34221822 -1—
32/3422—2/1220322 z+16/3A22 -3Ba 3, 2Bzzo+4Azn—2Bss -2+
4A33 -1B33,-2B33,1 —6A22_1Bss, 3—13/3A220322 —g+A4e,—¢+ By -4

Cuz23 = —64/21A3 3 ,B3 33 - 8/2143 2,182,320+ 256/21A43 5 3B3 3, -3 — 128/21423, ~2B3,3 -
2'56/211‘12 2, 2A2 2,2B333 + 176/2142 2,-1422,183232 — 16/342 2,-14222B33,1 +
32/21433 -1B3 318323 + 24/TAz 2 1Bs s s + 4/214320B3 3 | +8/21422 042218221 +
84/2143 9 043,338,320~ 32/214330B32,2,0B2,2,2—8/T43,3, oBs 3,2—64/21A32 14222832 -1+
8/3432, 1322 1By a2 — 4/2149, 1B220B221 + 242, 1Bs 11+ 24/35432, 1By +
32/21A22,9B3 50 + 128/2143,9,2B2 3, 3B22.3 — 88/2143,3,2By,3,1Ba,2,1 — 442,2,2B3,10 —
24/35A322Bs 30+ Aq¢22 + By2,2,

Cya1 = —18/TA3,0Bya1 — 88/2143 5 1 Bya 1 + 64/3433, 242218223 —
704/21A32, —242 22322 1- 128/21422 —2B331B3 323 + 968/TA32 3Bsss +
44/21A93 1B}, — 32/21423, 142208333 + 88/21423 142218231 -
32/21A2 2,143, 223220 — 32/21A33 _1B3 208233 + 16/TA23042,2,18320 +
64/21A220A2223n 1+16/2lAzaoBzz 15222—8/7A22032203221+4A2203311—
32/35A43.2,0Bs 3,1 +8/TAz,21B3 5+ 256/2149,3,14223B3,3,_3 + 352/2142,21B3,2,2B2,2,2 —
44/21A33,1Ba 3, 13221—2«42213310+48/35A2213330-32/34222322-23221+
16/21-4222322 13220-84222331 —1—96/354322Bs3 -1+ Ag21 + By2,1,

C420——16/7A22 -1B23232— 16/7A 1322_2+8/7A22 23221+128/7A22_2A2’2’032,2,2+
18/7A33, 2442213221—255/7422 2A2223220—64/7«422 —3B320B223 +
48/7 A3 g, 23332-24/7A22 1-422032214-48/7422 —14221B220 +
13/“22 1A222322 1"8/7422 1B2,2, 1Bzzz+12/7-422 1B2,20B3,2,1 +
6Ag2 - 13311—48/35422 13331-—24/7,4“0,4”13“ 1+128/7A220-4222322 -3+
128/74220322 23222—24/7A220322 13221-8/7A221322 23221+
12/TA32,1B33,-1B2,20 — 642,2,1B8s,1,—1 + 48/35A423,1Bs 3, - 1 +8/TA222B3, | —
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64/TAq 3283328320 — 48/TA333Bss 2 + A43,0 + B4 2,0,

Cy2,-1 = —88/21A2 3,~1B2,21 — 16/7A2 2, 0B2,2,-1 + 256/21A23 —2A33 -1B323 +
64/2142 2,-242,3, 0Bs, 2,1 — 32/2142 2, 2A2 218220 — 704/2143 3 _2A4222B32, 1 —
32/3433, —2322 13222 +16/21Az9 3By 20B221 + 8422 383 1.1 +93/35A22 -2B3s1 +
8/TA33,1B3 50 + 18/TAg 1 4220B22,0 + 88/21433 _14221B23,-1 +
64/3A33 14293B22, 3 + 352/2142 2,-1B2,3,-2B222 — 44/21433 1B33 1832 +
2433, 133 1,0~ 48/35422 -1Bs 30— 32/2114220442 2,1B2,2,—3 + 16/2142 20322 ~2B221 —
8/TA230B33,-1B220 — 4422,0Bs,1,—1 + 32/3543 20853 -1 + 44/21 433, 132 2,1~
32/2142,2,132,2,—232,2 0— 128/21A2 2,2B33,-2B33 -1 —96/TA323Bs s, s + A4 3,-1+ By¢2,-1,

Cu3,-2 = 256/21A43 3 3By 23— 8/21A3 3 _1Byao— 64/2143 B33, 3 + 32/21433, 383, -
84/21A39 2433 18321 + 64/21433 343208220 — 16/34232 34321B22,-1 —
256/21A33 _3A322B23 3+ 128/21433 9By 3 2B 33 —88/21423 28232 -1B22,1 +
4Ag2 9Bs10+24/35A23 2Bsso+8/21A33 1423208221+ 176/21423 14321833 2+
8/3Ag,91B22,2B23,1 —4/21A23 _1B2 3 -1B23,0 — 2423,-1Bs1,—1 —24/35A33 -1Bs s -1 +
4/21A920B3, | —32/21A4320B22,-3B220+8/TA2,2,0Bss,—3+32/2143.31B32 2B23 -1 —
24/TA2,2,1Bs 3,3 — 128/ 21A2,2,2B§,g,-2 + Ay 2,2+ By2,-2;

C4,00 = A4,00 + B4,0,0-

This gato operation # is a noncommutative product, here expressed in the basis of the
three-dimensional harmonic oscillator states. It has several properties that link the to physical
properties of the optical elements with mathematical statements on selection rules [10]. But
further, if we count the number of terms in the preceding gato operation in the symplectic bases,
and a corresponding count in the monomial bases, we find some economy in the symplectic basis
(16]:

BASIS ORDER 3 ORDER 5 ORDER 7
MONOMIAL 12 54 422
SYMPLECTIC 12 52 318

10 Economy in Aberration Calculations

Two general linear (M) and aberration (A) group elements multiply through

§{A,M} G{B,N} = 6{A # D(MBMN]}. (23)

Now, the symplectic basis "I;’,'; is block-diagonal under paraxial —linear— transfor-
mations, with a matrix composed of the (analytically continued) Wigner D-matrices:

213



1
(| Dfsxs) 0 0 0
. ,
Disxs) 0
0 3 0 0
0 Diixy]
3
D7) 0
0 0 0
0 D[13x3]
4
Digxg] 0 0
2
o 0 0 0 D[5x5] 0
0
0 0 Diixy
\ J

The number of non-zero matrix elements in the two bases is

BASIS ORDER 1 ORDER 3 ORDER 5 ORDER 7 k — o
MONOMIAL 9 36 100 225 ~k*/4
SYMPLECTIC 9 26 58 107 ~2k3/3

The total number of operations necessary to T*h aberration order, including matrix
multiplication by the linear part is, for the two bases,

monomial ;: 7680, symplectic : 3882.

For this reason we conclude that the most efficient basis to carry through aberration compu-
tations in axis-symmetric systems is the angular momentum basis of the harmonic oscillator

states.

11 Outlook

This has been a quick revision of the state of the art in seventh order aberration calculations in
axis-symmetric geometric-optics systems. We have seen that the state schemes of the harmonic
oscillator provide order and symmetry in the classification of aberrations. In these conference
proceedings we cannot go much further, so let me state that wave optics is the true objective of
this quest. We can design and specify systems in geometric optics; once this is done we would
like to predict the imaging behavior of such a system when light of a definite color is used.
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